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A series of four force-biased and two Metropolis Monte Carlo calculations were run on a 
dense Lennard-Jones fluid just above its melting point. Our purpose was to test some recent 
theoretical predictions [l] as to the relative speed and stochastic characteristics of these 
algorithms, and to learn what the most propitious maximum step-size was, in each case. We 
found that the principal predictions in [l] were upheld for this system, that the Metropolis 
algorithm was speeded up by using the larger of the two maximum step-sizes tried, that the 
force-biased algorithm with the full bias was speeded up by using the smaller of the two step- 
sizes tried, and that the force-biased algorithm, with the bias partially on, was relatively insen- 
sitive to the choice of this parameter. Ic? 1986 Academic Press, Inc. 

INTRODUCTION 

In a previous article [l], a theoretical study was carried out whose purpose was 
to try to characterize and understand the convergence characteristics that are 
intrinsic to the Metropolis [2] and the force-biased [3-51 Monte Carlo algorithms 
(hereafter MMC and FBMC, respectively) when these are applied to liquids. The 
approach taken was to approximate the real situation by model transition matrices 
based on Gauss-like histogram distribution functions. Since these transition 
matrices were defined over a computationally manageable number of states 
(O(lO*)), it was possible to obtain values for their subdominant eigenvalues, which 
control the convergence rates, and to evaluate the stochastic characteristics of the 
algorithms. It was found, both from the subdominant eigenvalues and from the 
stochastic characteristics of the Markov chains generated, that the FBMC 
algorithm with the biasing strength partially turned on (i.e., with 0 <A < 1) was 
best. It was also found that the FBMC algorithm with A = 1, i.e., with the biasing 
fully turned on, tended to procedure an over-occupation of the low-energy wing of 
the distribution function, at the expense of the high-energy wing, in the early stages 
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of the walk. Of course, in the limit of an infinite number of steps all the algorithms 
converge to the same limiting distribution function. This skewing behavior was 
shown to be due to both limited state-to-state accessibility at each step, and to dis- 
tortion of the bias due to first-order truncation of the energy expansion. As the one- 
step accessibility was reduced, or as the distortion was increased, the skewing with 
any 2, > 0 algorithm increased, as did the magnitude of the subdominant eigenvalue, 
indicating slower overall convergence. 

The purpose of this article is to test the principal results and predictions found in 
[l] against what happens in actual simulations on liquids. Our motivation to do 
this is twofold. First, the approximations that were required to do the calculations 
in [I 1, of course, made tentative the connection of [ I] to actual simulations, so we 
simply wanted to see how well or otherwise the theoretical results [l] fared against 
reality. Second, a question arose implicitly in [l] that could not there be resolved. 
The question was, how does the maximum move size, in both MMC and FBMC, 
affect the convergence rate and stochastic characteristics of the algorithm7 For 
MMC a large maximum step size seemed to be indicated since this would increase 
the number of states accessible at each step, and this increase was found to have a 
salutary effect on the convergence rate (see Figs. 6-8 of [I]). But the approximate 
way in which accessibility was modelled in [ l] rendered this conclusion tentative. 
The question, applied to FBMC, was even less answerable. Here, increasing the 
maximum step-size increases both accessibility (which is beneficial) and distortion 
of the biasing function due to first-order truncation (which is detrimental). Since it 
was impossible to know which effect would dominate, the important practical 
question of how to choose the maximum step size in FBMC calculations remain& 
unanswered. Thus part of the purpose of this article was to shed some light on this 
issue. 

CALCULATIONS 

We chose to study the details by which the different algorithms, each run with 
different maximum step sizes (d) brought about melting in a dense Lennard-Jones 
solid at a temperature just above its melting point. A low temperature was needed 
since the differences between the algorithms diminish with increasing temperature. 
The melting transition was chosen since we wanted to monitor the evolution of the 
limiting potential energy distribution function, with all energy levels except one 
initially unoccupied. Thus our starting configuration was always an FCC lattice 
wherein all the particles have the same initial potential energy. Our temperature 
was T* = 0.719 and density p* was 0.85, since at p* = 0.85 a Lennard-Jones s&hf 
melts at T* ~0.704 [6]. Here T* = kT/e, p* = po3, the Lennard-Jones potential is 
u(~)=~E[(G/Y)~~- (o/~)~], k is the Boltzmann constant and p is the number den- 
sity. 

To test the predictions in [l], we monitored (in addition to the usual functions) 
the evolution of the histogram distribution function shown in Fig. 1, from the 
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FIG. 1. Sixteen selected energy regions (E,-El,) from left to right that comprise the normalized 
limiting histogram distribution function for the Lennard-Jones liquid at p* = 0.85, T* = 0.719, N = 108. 
f[E(co)] is the fraction of particles within the energy range indicated by the appropriate rectangle. The 
regions E, and El4 are used in the text to illustrate the depopulation and population of the low- and 
high-energy wings of the distribution function, respectively. The solid line at E/NkT = - 9.4905 
represents the potential energy for the initial FCC configuration. Further details are given in Table I. 

starting FCC configuration. We also stored system configurations periodically, to 
check for the onset of melting. 

All the calculations were done with 108 particles, the usual periodic boundary 
conditions, spherical cut off at 2.5136~ and the test particle picked at random. The 
FBMC calculations were done as in [4, 51. The calculations were done on an FPS- 
164 Array Processor that carries 15 significant ligures in its arithmetic operations. 

RESULTS 

We want to compare the different ways by which the limiting histogram dis- 
tribution function shown in Fig. 1 is filled in by the different algorithms. In par- 
ticular, to test the results of [1] we focus on the development of the wings of the 
distribution function. Thus we describe the rate of population of the high energy 
wing, for which we use region E,, (Fig. 1) and the corresponding depopulation of 
the low-energy wing, for which we use region E3 (Fig. 1). Our situation of having 
region E, over-occupied and region E,, under-occupied in the early stages of the 
walk is a consequence of starting from an FCC configuration for which the poten- 
tial energy per particle is considerable lower than the final ensemble average energy. 
(Here E(initial)/NkT= -9.49 versus <E/NkT) = - 7.93, both without a tail 
correction). 

These results are given in Figs. 2 and 3, where we plot the fraction of particles in 
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FIG. 2. These graphs trace the progress by which region E, of Fig. 1 is depopulated in the course of 
each of the six walks that were generated, starting in each from an FCC configuration. (-) FE?MC rZ = 3, 
(--) FBMC ,I= 1, (---) MMC. (A) is for n =O.lOq (B) is.for d =0.150. both here and in Figs. 3 
and 4. 

the low- and high-energy regions, respectively, over the course of the walk. Each 
fraction is normalized with respect to its infinite time value (Table I>, so that 
achievement of the equilibrium distribution function is indicated by the plotted 
function oscillating about unity. It is clear from these graphs that 

(a) the MMC algorithm is the slowest to reach equilibration, but its perfor- 
mance improves with increasing maximum step-size, 
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FIG. 3. These graphs trace the progress by which region E,, of Fig. 1 is populated, starting from the 
FCC configuration. Legend and distinction between (A) and (B) as in Fig. 2. 

581/62/2-14 
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(b) the FBMC ;1= 4 algorithm is the fastest to come to equilibrium; its per- 
formance is affected slightly and negatively by use of the larger maximum step-size, 

(c) the FBMC 1= 1 algorithm is almost as fast as the 1= 4 algorithm for the 
smaller maximum step-size but is significantly slower for the larger maximum step- 
size. 

The above results for equilibrating the wings of the energy distribution function 
are completely consistent with those for the onset of melting shown in Fig. 4. Here 
we plot the evolution of the function [6], 

s= (S, + s, + SJ3, (1) 

where 

s, = 2 cos - 
4rcx, 

i=l a 

with similar expressions for S, and SZ. In Eq. (2) X, is the absolute X coordinate of 
particle “i,” and “a” is the side of the unit cell in the initial FCC lattice. S, equals N 

TABLE I 

ksymptotic Values for the Fractions of Particles Found 
in the Energy Ranges E,-E,, of Fig. 1 

LABEL - EjNkT f iE(~)l” 

4 9.8-9.6 0.0023 
~52 9.6-9.4 0.0069 
E3 9.49.2 0.0168 
E4 9.2-9.0 0.0334 
E5 9.0-8.8 0.0559 
E6 8.8-8.6 0.0799 
E7 8.6-8.4 0.0997 
E8 8.4-8.2 0.1105 
6 8.2-8.0 0.1103 
El0 8.0-7.5 0.2282 
41 7.5-7.0 0.1347 
El2 7.0-6.5 0.0668 
El3 6.5-6.0 0.0306 
El4 6.0-5.5 0.0133 
El5 5.5-5.0 0.0058 
El6 5.W.5 0.0025 

“These were obtained by averaging over all six 
Monte Carlo walks reported in the text, after the onset 
of melting in each. The total number of trial moves on 
which these entries are based was 1.805 x 106. The stan- 
dard deviation for regions E3-E,, was in the range 
0.00-0.002; for the regions E,, Es, E15, E,, it was 
-0.ooo5. 
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FIG. 4. Development of the function S (Eq. (1)) with the different algorithms. Legend and dis- 
tinction between (A and B) as in Fig. 2. The arrows, determined from the results in Figs. 2 and 3, are 
seen here to coincide with the onset of the liquid (see text). 

exactly in an appropriately oriented FCC lattice, it is of the order of N in any 
(appropriately oriented) lattice, and it oscillates around zero with an amplitude of 
order N”’ for a liquid [6]. A comparison of Fig. 4 with Figs. 2 and 3 reveals that in 
every walk the onset of melting (deduced by S oscillating around zero within a 
range of + 10) coincided essentially exactly with the point at which the wings of the 
energy distribution reached their equilibrium values. This was taken to occur when 

TABLE II 

Ensemble Averages for the Internal Energy and Cumulative Constant Volume 
Molar Heat Capacities of the Lennard-Jones Liquid 

Algorithm” - (E/NkTjb Cu(cal/mol K)* No. trial moves x !O- 3 L’ 

MMC 4 = 0.10 7.93 5.3 600 
MMC 4 = 0.15 7.91 5.1 450 
FBMC i = 0.5, 4 = 0.10 1.94 5.3 500 
FBMC 1. = 0.5, 4 = 0.15 7.94 5.1 425 
FBMCI=l.. 4=0.10 7.93 5.7 475 
FBMC,I=i., 4=0.15 7.91 5.0 200 

a See text for meaning of symbols. 
h These are for the liquid only, with no tail correction. For comparison. molecular dynamics values 

18, 91 are (E/NkT) = - 7.96 + 0.14, Cu = 5.3 cal/mol K. This Cu value was estimated from the ?em- 
perature-dependence of the configurational energy. obtained with the energy equation and fitted 
molecular dynamics radial distribution functions [9]. The Cu’s reported in [7] for these state conditians 
are now known to be too high, partly because of round-off error [due to single precision arithmetic 173) 
and partly because of incomplete equilibration after liquefaction in [7]. 

‘This is the number of single-particle trial moves made subsequent to melting, in each walk. 
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the plotted functions in Figs. 2 and 3 started to oscillate around a value of 1. The 
arrows in Fig. 4 refer to these points in Figs. 2 and 3. 

The ensemble averages for the energy, heat capacity, and radial distribution 
functions also showed shifts with the formation of the liquid, but these are not 
shown. Their response to the onset of the liquid was not nearly as sharp as those of 
the functions shown in Figs. 2 and 3. The ensemble averages for the energies and 
heat capacities for the liquid are summarized in Table II. The heat capacities were 
obtained as described previously [7]. 

It is worth noting that the rate of filling of much of the central part of the 
equilibrium energy distribution function eg regions E, to E,, in Fig. 1 showed no 
noticeable trend either with algorithm or with maximum step-size. This central 
region reached its equilibrium value rapidly and at roughly the same rate in all six 
walks. Thus, for the system at hand at least, the fastest algorithms were charac- 
terized by their ability to rapidly populate and depopulate the wings rather than the 
central part of the energy distribution function. 

DISCUSSION 

It is gratifying to be able to report that those predictions in reference [1] that 
were testable, were borne out by the foregoing results. In particular, as predicted, 
we found that 

(a) the FBMC A= f algorithm was faster to provide the equilibrium dis- 
tribution function than either the MMC or the FBMC /z = 1 algorithms, 

(b) the slowness of the FBMC 1, = 1, relative to the A= + algorithm, was con- 
nected with the slowness of the il = 1 algorithm to, respectively, depopulate and 
populate the low- and high-energy wings of the energy distribution function in the 
walk toward equilibrium, 

(c) the relative order by which the high-energy wing is populated, starting 
from a state in the low-energy wing was: FBMC ;1= 4 > FBMC A= 1> MMC. This 
was precisely the order found in our model calculations (Fig. 9b, Cl]). 

We are also now able to address the question mentioned in the Introduction 
regarding the most propitious choice of the maximum step-size in the different 
algorithms. For the system studied here, the MMC algorithm was significantly 
speeded up in going from a maximum step-size of 0.10 for which the mean accep- 
tance rate was -0.42, to a maximum step-size of 0.15~ and a mean acceptance rate 
of -0.25. So for MMC, within these ranges and for this system at least, it pays to 
increase the one-step accessibility, despite the resultant lower acceptance rate. Just 
the reverse turns out to be true for the FBMC 1= 1 algorithm. Here the speed of 
equilibration was made significantly faster by reducing the maximum step-size from 
0.150, where the mean acceptance rate is -0.35, to 0.100, where the mean accep- 
tance rate is -0.70. As discussed below, this result is noteworthy in two respects. 
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First, it is partially at variance with an earlier suggestion [4], that the maximum 
step-size for arzy algorithm be selected so as to maximize the root-mean-squared 
(rms) displacement per move. For liquids at relatively high densities this latter 
criterion leads to a choice of larger rather than smaller maximum step-sizes. So 
while the root-mean-squared criterion is in accord with our MMC results, it clearly 
conflicts with our (high density ie p* = 0.85) FBMC ,? = 1 results. We point out, 
however, that at lower densities (e.g., p* = 0.77) the rms displacement criterion, 
does not lead to large maximum displacements for 1” = 1 [S]. 

Second, the result clears up, at least for this system, which of the two competing 
effects on the convergence rate: an increase in accessibility or a decrease in the dis- 
tortion of the biasing function is the more important. We now know it is reduction 
of the distortion that is here more important when IL = 1. This also turned out be 
true for the L = 4 algorithm, but for L = $ the effect of using different maximum step- 
sizes was much less than with R = 1 (cf., e.g., the FBMC 2 = 4 versus I. = I tracings 
in Figs. 2A versus 2B, 3A versus 3B, an,d 4A versus 4B). So a final conclusion that 
can be drawn is that the choice of the maximum move size with the FBMC i, = 3 
algorithm is relatively unimportant, at least for choices that give reasonable aaxp 
tance rates. 
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